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Photophysics of Polyurethanes based on

1,5-Naphthalene Diisocyanate

Charles E. Hoyle and K. J. Kim

Department of Polymer Science
University of Southern Mississippi

Southern Station Box 10076
Hattiesburg, MS 39406-0076

Introduction

Excimers are excited-state complexes formed between
equivalent chemical species, one of which is in the excited
state prior to forming the excimer. Over the past two
decades, excimers In polymer systems have continued to
attract a significant amount of attention. Key references
may be found in a recent review by Guillet (1). With few
exceptions, polymers with pendant chromophores, such as
naphthyl or phenyl groups, readily form excimers which are
characterized by their red-shifted (in comparison to
emission from a single chromophore) emission spectra. In
dilute solutions, the excimers result from intramolecular
association of an excited aromatic chromophore and a ground
state chromophore on the same polymer chain.

?2In contrast to the vast number of studies on excimers
F formed between aromatic chromophores pendant to the polymer

backbone, relatively few papers have been published on
excimers formed from polymers with the interactive species
in the backbone. Selected examples can be found in
references 2-5. In this paper, we report on the
photophysical behavior of polyurethanes based on
1,5-naphthalene diisocyanate (NDI) which have naphthalene
chromophores periodically spaced along the polymer backbone.
Excimer formation is found in both dilute solutions and
films. The discovery of the excimer emission in
polyurethanes is of particular interest since excimer
formation may alter the photolytic degradation process.,/

Experimental

The lo5-naphthalene ditsocyanate (NDI) was synthesized
by reacting 1.5-diaminonaphthalene (Fluka) and
trichloromethyl chloroformate (Fluka) in p-dioxane at the
reflux temperature (100 C). The colorless solid (mp 126°C)
was obtained by sublimation under vacuum. The propyl
carbamate of 1-naphthyl isocyanate (mp 73*C) was prepared by
reacting 1-naphthyl isocyanate (Aldrich) and 1-propanol
(Baker) in ethyl acetate. The bispropyl carbamate of
1,5-naphthalene dilsocyanate (mp 203rC) was prepared by
reacting 1,5-naphthalene diisocyante and 1-propanol in
p-dioxane.

The NDI based polyurethanes were obtained by reacting
1.5-naphthalene dilsocyanate and poljtetramethylene oxide
(W 650 and 2000; Polysciences) with dibutyltin dilaurate
and Dabco as catalysts in tetrachloroethane at 100CC for 2.5
hours. The polyurethnes formed were dissolved in
dichlorometha,, and purified by double precipitation In
cyclohexane. The molecular weight of NDI-650 and NDI-2000
were 51.000 and 63,000, respectively (GPC).

Emission spectra were recorded on a Perkin-Elmer
650-10S Fluorescence Spectrophotometer. Fluorescence decay
data were ubtained on a single-photon-counting apparatus
from Photochemical Research Associates (PRA). The data were
analyzed by a software package obtained from PRA based on
the iterative convolution method. Infrared spectra were
obtained on a Nicolet 5DX FTIR.

Results and Discussion

Before presenting the results for the NDI based
oolvurethanes, the emission characteristics of two small



molecule naphthyl carbamate models are reviewed. Figure 1
shows the steady-steady fluorescenc9 spectrum Aex - 300 nm)
of a dilute solution (3.0 x 10-4 M in benzene) of the
bispropylcarbamate of NDI ( 1 ) with discernable peaks at
345 nm, 360 nm, and 375 nm. Excitation (Xex - 300 nm) of a
dilute solution (3.0 x 10-4 M in benzene) of 1 yields a
decay curve (Aem - 350 nm) which readily fits to a single
exponential decay function with lifetime of 2.32 nsec.
Similar emission characteristics were obtained for the
propyl carbamate of 1-naphthyl isocyanate (2) with a single
exponential decay time k ex - 310 nm, Xem - 350 nm) of 5.09
nsec. Fluorescence decay curves of 1 and 2 in
dichloromethane where also single exponential giving
lifetimes of 1.84 nsec and 3.59 nsec, respectively. In
benzene, in which 2 but not 1 is highly soluble,
concentrations of 2 above 1.55 M resulted in excimer
formation as identified both by its characteristic
red-shifted emission and long lived fluorescence lifetime
(-21.7 nsec).

The steady state fluorescence spectrum (Figure 2) of a
dilute dichloromethane solution (0.1 g/l) of a polyurethane
designated as NDI-650 [based on 1,5-naphthalene
diisocyanate (NDI) and a poly(tetramethylene oxide) polyol
with average molecular weight of 650] is similar to that for
the model biscarbamate (Figure 1). However, there is a
distinctive red-shifted tail above 400 nm in the case of the
NDI-650 polyurethane. Consistent with the red tail is the
fact that the fluorescence decay curves of dilute solutions
of NDI-650 cannot be fit to a single exponential decay
function, no matter what the wavelength of observation.
This suggests the possibility of excimer formation between
two naphthyl chromophores on the same polymer chain
(intramolecular). In order to affirm this postulation, the
NDI-650 polyurethane fluorescence spectra were recorded in
dilute solutions of solvents with decreased solvating power
(poor solvents). As the solvent power decreases, the
emission shifts to longer wavelengths as excimer formation
becomes prominent. To illustrate this phenomenon, the
fluorescence spectrum of NDI-650 in benzene (a poor solvent
relative to dichloromethane) is given in Figure 3. It has
both monomer (- 350 nm) and excimer (3400 nm) emission.
Support for assignment of the emission above 400 nm to an
excimer state is provided by the excitation spectrum
(Xem - 430 nm) of the red-shifted emission which is
identical to the absorption spectrum of the NDI-650
polyurethane in benzene. Furthermore, the excimer is
probably intramolecular since the concentration is
significantly less than that observed for the onset of
intermolecular excimer formation in several solvent systems.
A preliminary analysis of the fluorescence decay curves of
the NDI-650 polyurethane in benzene (0.1 g/l), was
conducted. Attempts to fit the decay curve recorded at 330
nm to a sum of two exponentials failed. Fitting the decay
curve to a sum of three exponentials. as recently suggested
(6, 7), leads to acceptable results with lifetimes for the
three exponentials of 1.3 nsec, 2.4 nsec and 22.3 nsec.
Judging from the long lived portion (T - 22.3 nsec) of the
fluorescence decay curve recorded at 330 nm, it can be
speculated that the excimer is probably formed reversibly
and exists in dynamic equilibrium with an excited monomer
species. A similar lifetime of 24.8 nsec was obtained from
a second decay curve recorded at 500 nm (excimer emission)
by fitting a single exponential decay function to the long
lived portion of the decay curve. The short lived
components (1.3 nsec and 2.4 nsec) from the decay curves
recorded at 330 nm may arise from two monomeric species, one
which is unquenched and one which Is in equilibrium with the
excimer, with different lifetimes. Such an approach to
analysis of excimer kinetics has been employed 46, 7) to
interpret the decay curves of other polymer systems.

Our basic interest in excimer formation in NOI-based
polyurethanes lies in its effect on the photodegradatlon
process, i.e., exctmer formation could lead to a change
in the mechanism for photolytic decomposition. With this

in mind, It is of particular Interest to note that the
fluorescence spectrum of an NDI-650 polyurethane film



(xex - 300 nm) is dominated by excimer emission (Figure 4).
A preliminary multiexponential analysis of the decay curves
indicates a complicated photophysical system. However, It
can be reported that the long lived component of the excimer
decay curve (taken at 500 nm) does yield a lifetime of -22
nsec for excimer emission, close to that obtained in
benzene.

In contrast to the results for the NDI-650
polyurethane, the fluorescence spectrum of a polyurethane
film of NDI-2000 [based on NDI and a poly(tetramethylene
oxide) polyol with average molecular weight of 2,000] shows
appreciable emission from the monomer component (Figure 5).
Although the excimer and monomer decay curves are complex
and difficult to analyze, the long lived component of the
excimer decay curve (recorded at 500 nm) is about 21 nsec,
In close agreement with the lifetime obtained for the
NDI-650 film.

In contrasting the results for the NDI-650 and NDI-2000
films, it is apparent that the extent of excimer formation
is greater for the NDI-650 film. It may be argued that the
increased. relative concentration of naphthyl carbamate
chromophores in the NDI-650 film leads to increased excimer
formation. It should, however. be pointed out that there is
a distinct and perhaps critical structural difference
between the NDI-650 and NDI-2000 polyurethane films which
may manifest itself in increased excimer formation. In the
NDI-650 polyurethane film, there is a significant degree of
hydrogen bonding to the carbonyl on the urethane moiety.
This is exemplified by the infrared spectra of the NDI-650
and NDI-2000 films given in Figure 5. The NDI-650 has
primarily hydrogen bonded carbonyls (1,695 cm-1) while the
NDI-2000 films have a high content of non-bonded carbonyls
(1,740 cm-l). It is conceivable that the hydrogen bonding
in the NDI-650 films may lock in or stabilize the excimer
site geometry and provide for an increased degree of
excimer, relative to monomer, fluorescence. This
possibility is under investigation.

Conclusions
Fluorescence analysis, both steady-state and transient,

indicates that excimer formation in polyurethanes based on
1,5-naphthalene diisocyanate is facile, both in dilute
solution and solid films. The extent of excimer formation
is directly related to the "poorness" of the solvent. In
solution, a preliminary kinetic analysis indicates that the
excimer is formed reversibly. For NDI-polyol based
polyurethane films, steady-state fluorescence shows a
difference in the ratin of excimer to monomer emissionwhich
depends on the length of the polyol segment. This
difference could be due to hydrogen bonding of carbonyls in
the urethane moiety, but additional work is required to
confirm this postulation. Future work ill concentrate on a
more exact analysis of the decay curves for films and
solutions of NDI based polyurethanes. In addition, the
effect of excimer formation on the photodegradation
properties will be investigated.
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